BLINK EXAMPLE

/* This is a multi-line comment
the setup runs once */
void setup(){
 // This is a single line comment
 pinMode(LED_BUILTIN, OUTPUT); // Set the pin 'LED_BUILTIN' to be an output
}

// loop function runs over and over again forever
void loop(){
digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)
delay(1000); // wait for a second, 1000 milliseconds equals 1 second
digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
delay(500); // wait half a second, now we jump to the start of 'loop'
}

CONTROL
To control how your program flows use these tools in your code.

IF
if (x < 5) { // if x is less than 5
 x = x + 1; // add one to x
 x = 0; // if x is 5 or more, do this
}

WHILE
while (x < 5) {
 x = x + 1; // if x is greater than 5, add one to x
 // while x is less than 5, add one to x
 // when x isn't less than 5, stop the loop
}

FOR
for (x=0; x<10; x=x+1) {
 if (x < 10) {
 Serial.print(x); // print x to the screen
 }
 // starting at 0, increment by 1, stop when x isn't less than 10
 i++; // means increment by 1!
}

SERIAL EXAMPLE
// Great for debugging and displaying status to the screen
// After upload, go to Menu > Tools > Serial Monitor
int x = 0; // create a global variable x and set it to zero

void setup(){
 Serial.begin(9600); // set the serial port speed to 9600 baud
}

void loop(){
 Serial.print(x); // print the string 'hello' with a new line
 Serial.print(x+1); // print the string 'hello' without a new line
 Serial.print(x); // print the variable x, with a new line
 // same as x=x+1
}

SERVO EXAMPLE
// Servos accept an angle
#include <Servo.h> // include the servo library
Servo myservo; // create a servo instance
int pos = 0; // global variable to set the servo angle (degrees)
void setup(){
 myservo.attach(9); // attach the servo signal to pin 9 (other pins ok)
}

void loop(){
 for (pos = 0; pos < 180; pos += 1){
 myservo.write(pos); // write the servo position 0 to 180 degrees
 delay(10); // pause for 15 milliseconds between changes
 }
 for (pos = 180; pos > 0; pos -= 1){
 myservo.write(pos); // repeat the process in reverse, 180 to 0 degrees
 delay(10);
 }
}

MORE POWER TO YOU

Devices like Pumps, Motors, bright LEDs and Solenoids need more power than the Arduino can provide.

To overcome this issue you can use a transistor, MOSFET or motor driver to do the job. These devices accept a signal from the Arduino and take power from an external source such as an external battery or power pack.

Below is one way of doing this. The TIP120 transistor is fed a signal from the Arduino and then conducts the power to the external supply to the motor when needed.

You can then use digital, analogue or PWM to combine the motor to the speed you want.

Q&A, classes & to share your project!
hello@TinkerElectric.com

FREE TO SHARE
Shareable under the Creative Commons License, simply attribute TinkerElectric.com

DATA TYPES

- boolean (0 / FALSE or 1/TRUE)
- char (character a, b, c, d, e, f)
- byte (0 to 255)
- int (32,768 to 32,767)
- long (-2,147,483,648 to 2,147,483,647)
- float (-3.4028235E+38 to -3.4028235E+38)

Want to shorten the time from idea to done?
Simply email us!